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Global-positioning-system-guided indirect fire weapons can precisely engage high-value
targets at long range, and the use of these weapons has been contemplated in complex
terrain with obstacles and restricted airspace. Path planning for loitering weapons, such
as unmanned aerial vehicles, has been well studied in the recent literature, but no path
planning methods for global-positioning-system-guided indirect fire weapons are currently
available. This paper presents a path planning method for this case by modifying a framework
commonly used for loitering weapons.

Nomenclature
ax coefficient of t3 in the parametric representation of x

az coefficient of t3 in the parametric representation of z

bx coefficient of t2 in the parametric representation of x

bz coefficient of t2 in the parametric representation of z

c speed of sound
cx coefficient of t in the parametric representation of x

cz coefficient of t in the parametric representation of z

Db axial force from the projectile in the body reference frame
De axial force from the elevator in the body reference frame
DTED digital terrain elevation data
Dθ̇(m) pitch damping moment coefficient
dx constant in the parametric representation of x

dz constant in the parametric representation of z

Fx x component of the resultant force acting on the projectile
Fz z component of the resultant force acting on the projectile
G(V, E) search graph with vertex set V and edge set E

g acceleration of gravity
I projectile moment of inertia
K fixed pure proportional navigation gain constant
L characteristic length
Lb normal force from the projectile in the body reference frame
Le normal force from the elevator in the body reference frame
M projectile mass
m Mach number
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qdyn dynamic pressure
S characteristic area
ti time associated with a configuration for a parent vertex
tf time associated with a configuration for a child vertex
t ′f next iterate for tf in the local planner
v projectile velocity in the inertial frame
wm mth downrange waypoint
x downrange position in the inertial frame
xAim downrange aimpoint
x̄I state of the initial configuration
xi downrange target position for the parent vertex
xf downrange target position for a child vertex
xt downrange target position
z altitude in the inertial frame
zi altitude for a parent vertex
zf altitude for a child vertex
α angle of attack
αd desired angle of attack
αf angle of attack for a child vertex
αi angle of attack for the parent vertex
δ elevator chord to center of gravity
δ̄ velocity error tolerance
ε elevation angle
ε̄ position error tolerance
θ pitch angle
λ(α, ε) PPN gain constant
ρ air density
τ autopilot time constant
φ line of sight angle

I. Introduction

NET-enabled weapons promise to bring near real-time command and control to battlefield commanders. In
dynamic scenarios, where weapons are directed in near real time, it is necessary to optimize weapon–target

pairing from a set of feasible assignments. In a feasible assignment every weapon can prosecute its assigned target,
satisfying the kinematics of the weapon and the constraints in the working space. Commanders will have a variety of
loitering and indirect fire weapons available. (Indirect fire weapons include artillery, mortars, and rockets that glide
into targets. These weapons do not rely on direct viewing of the target through a sight and require command and
control systems for fire direction.) It should, however, be noted that while path planning for loitering weapons has
been well studied in the recent literature [1–3], this is not true for indirect fire weapons.

Global-Positioning-System (GPS) guided indirect fire weapons are canard controlled [4] and can either use
proportional navigation for guidance [5,6] or a trajectory shaping guidance law [7,8] to control the flight path impact
angle. Trajectory shaping guidance for indirect fire weapons has traditionally been used near impact [9], not for
obstacle avoidance, and there is no guarantee that a near-vertical impact will avoid terrain or restricted airspace.

The path planning models for loitering weapons often use a turn rate limited vehicle in a horizontal plane with
obstacles present, a model commonly used for the Dubins car [10]. One approach is sampling based, where a sampling
scheme is used to probe the configuration space along with a collision detection module. These approaches input the
initial and goal configurations and search until a feasible path is found or report a failure to find such a path. Rapidly
exploring dense trees (RDTs) have been used to develop efficient path planners of this type [10]. When differential
constraints must be satisfied, a means for connecting two configurations, the local planner, must be determined. The
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local planner accepts the start and end configurations and returns the control that will connect them. For a Dubins
car, any two configurations in the plane can be connected.

In this paper a path planner for GPS-guided indirect fire weapons is obtained from motion planning under
differential constraints (formulation 14.1) in La Valle [10], the same formulation used for the Dubins car. This path
planner requires an efficient local planner, which requires the solution of a two-point boundary value problem, and
the development of a suitable search tree. These components are developed below, along with some examples of
their use in path planning.

II. Equations of Motion
The dynamics of projectiles in flight has been well studied [11,12]. To simplify the equations of motion and

facilitate the presentation of the main ideas of the paper, it is assumed that the projectile is spin stabilized and has
three degrees of freedom (3DOF).

Consider the body reference frame shown in Fig. 1. The variables δ and ε represent the distance between the
elevator chord and center of gravity and the elevator angle respectively. The body normal and axial forces are Lb and
Db, respectively where normal is in the positive Zb direction and axial in the negative Xb direction (lift and drag are
typically in the wind reference frame with axial and normal reserved for the body reference frame.). Both Lb and
Db are functions of Mach number m and angle of attack α. The incremental elevator normal and axial forces are
Le and De respectively with identical directions and dependencies vis-à-vis the body forces, but with an additional
dependence on elevator angle ε.

The earth (inertial) reference frame is shown in Fig. 2. The munition is located at r and the target is at rt from the
munition CG. The munition velocity is v, angle of attack is α, and pitch is θ . This is a 3DOF system (x, z, θ). The
second-order nonlinear differential equations of motion for this system can be integrated to determine the munition
trajectory given the initial conditions and the autopilot and guidance control laws used to stabilize and steer the
munition into the target.

Fig. 1 Munition body reference frame showing CG and elevator.

Fig. 2 Inertial reference frame showing the angle of attack and target.

481



KENEFIC

Summing forces and moments in the inertial frame it follows that

Mẍ = −Dt(m, α, ε) cos(θ) − Lt(m, α, ε) sin(θ)

Mz̈ = −Dt(m, α, ε) sin(θ) + Lt(m, α, ε) cos(θ) − Mg
(1a)

I θ̈ = δLe(m, α, ε) + Dθ̇(m)θ̇ (1b)

where M is mass, I is moment of inertia, and Dt = Db + De and Lt = Lb + Le are the total normal and axial forces,
g is acceleration of gravity, and Dθ̇(m) is the pitch damping moment coefficient. Expressing the velocity in the body
reference frame leads to

α = atan2(−ẋ sin(θ) + ż cos(θ), ẋ cos(θ) + ż sin(θ)) (2)

where atan2 is the four quadrant tan−1. The Mach number is

m =
√

ẋ2 + ż2/c(z) (3)

where c is the speed of sound at altitude z. Normal force, axial force, and pitch moment, δLe(m, α, ε) are obtained
from the corresponding coefficients in the aero database multiplied by the dynamic pressure, qdyn = 1

2ρ(z)(ẋ2 + ż2)

and S, where ρ is the air density and S is a projected or characteristic area. The pitch damping moment coefficient
is Dθ̇(m) = 1

2CMQ(m)qdynSL2/
√

ẋ2 + ż2 where L is a characteristic length and CMQ(m) is obtained from the aero
database. The equations of motion (1) to (3) will be complete when the elevator angle control law has been specified.

A seeker head angle can be synthesized from the projectile and target positions to control the acceleration normal
to the velocity vector [6]. This is the pure proportional navigation guidance law (PPN) used here. When ε = α the
elevator is aligned with the wind direction in the body frame and no pitching moment is generated. If the line-of-sight
angle, φ, is increasing, then acceleration normal to v should be generated to decrease it. Such acceleration is obtained
after a positive pitching moment has changed the angle of attack to increase or decrease the total lift. From Fig. 2

φ = atan2(xt − x, z)

φ̇ = zẋ + (xt − x)ż

z2 + (xt − x)2

(4)

where xt is the target position (which could change with time, but is considered stationary here). The PPN control
law is then [6]

aN = λ(α, ε)(φ̇)
√

ẋ2 + ż2 (5)

where aN is the acceleration to be applied normal to the velocity vector and λ(α, ε) is the PPN gain. As aN is
proportional to the force normal to v the guidance law used is

L(m, α, ε) cos(α) − D(m, α, ε) sin(α) = MKφ̇
√

ẋ2 + ż2 (6)

where K is a fixed gain to be determined. The force on the left of Eq. (6) depends strongly on angle of attack and Mach
number, and weakly on elevator angle. The control is achieved by adjusting the elevator angle to create a pitching
moment to change the angle of attack. Some of the aero data used here for pitching moment are shown in Fig. 3.

Note that the moment is zero for α = ε = −10, α = ε = 0, and α = ε = 10 in Fig. 3. Hence for a first
approximation it is assumed that

ε = min(|α|, 10)sgn(α) (7)

in Eq. (6), so that α can be obtained by interpolation using Eqs. (6) and (7). (The variation is nonlinear, and an
improved approximation would use a piecewise linear fit to the aero data in Fig. 3.) The result is the desired angle
of attack, which is obtained by adjusting the elevator angle, so once αd is obtained by interpolation, the desired εd is
computed from (7). To avoid programming the autopilot loop, the dynamics in Eq. (1b) are omitted by assuming that
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Fig. 3 An example of pitching moment vs angle of attack for various elevator angles.

the autopilot adjusts the angle of attack with a time constant τ . The angle of attack is obtained by low-pass filtering
the desired angle to account for the lag in response to an input signal

α̇ = (αd − α)/τ (8)

where τ is the time constant. The integration of angle of attack takes place by adding it to the state vector. Note
that the equations of motion can be put in the form ˙̄x = f (x̄, xAim) where xAim is the target position xt and x̄ =
[x z α ẋ ż]′ is the state. Equations (1) to (8) are used to express ˙̄x in terms of the state variables. Note that this
computation requires interpolation in the aero database to determine the lift and drag coefficients. In the examples
presented below this form is integrated as an initial value problem for comparison with the results obtained using the
path planning algorithm.

III. Path Planning
The path planning method used here [13] follows a slight modification of the general framework for single query

sampling-based planning algorithms presented by La Valle [10] (The GPS guided munitions considered here are not
powered and cannot revisit higher altitudes in the vertical plane; the formulation in [10] does not contain such a
restriction).

1) Initialization: Let G(V, E) represent a directed search graph where V contains the initial configuration x̄I

at the initial altitude zI and E is an initially empty set of edges connecting configurations in V .
2) Vertex selection method (VSM): create a set of vertices at the next lowest altitude corresponding to aimpoints,

xAim, selected from the set [xt , w1, . . . , wM ] where wm, m = 1, . . . , M are waypoints along the x-axis and
xt is the location of the target.

3) Local planning method (LPM): solve a two-point boundary value problem to determine the unknown
components of the configuration associated with each vertex at the next lowest altitude.

4) Collision detection: determine if the line segment connecting the vertex at the previous altitude with the
vertex at the next lowest altitude intersects terrain or restricted airspace.

5) Insert an edge: add the vertex to V and the directed edge connecting this vertex to the one at the previous
altitude to E if no collision is detected.
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6) Return to step 2: if the next lowest altitude was not zero
7) Check for a solution: return all directed paths that lead from the initial configuration to any point within δ of

xt . Report failure if no such paths exist.

A. Vertex Selection
The initialization vertex creates M + 1 child vertices at the next lowest altitude, one for each waypoint and one

for the target position. Subsequently, vertices are created at the next lowest altitude by considering each vertex at
the previous altitude and creating child vertices at the next lowest altitude. The rule used here is to create only one
child using xAim = xt if the parent used xAim = xt , and create two children, one using xAim = xt and another using
xAim = wm, if the parent used xAim = wm. This is a single waypoint strategy to determine the altitude at which the
aimpoint should switch to the target, and it creates a dense search tree (shown below) where the number of vertices
is linear in the depth of the tree.

B. Local Planning
The equations of motion for the three degree of freedom model can be written as

ẍ = Fx(z, ẋ, ż, α)/M

z̈ = Fz(z, ẋ, ż, α)/M − g
(9)

where the pitch, autopilot, and guidance loop dynamics are approximated by

α̇ = (αd(x, z, ẋ, ż, xAim) − α)/τ (10)

and where τ is the guidance loop time constant, and xAim the aimpoint. The forces Fx and Fz depend upon angle
of attack, elevator angle, dynamic pressure, lift and drag coefficients, and pitch angle. The pitch angle is computed
from the velocity vector and angle of attack. The elevator angle is set to the angle that yields zero pitching moment,
assuming a fast autopilot loop, and then the lift and drag coefficients are obtained by a table look up on angle of
attack, elevator angle, and Mach number. The desired angle of attack, αd , is obtained by using PPN to compute the
desired force normal to the velocity vector from the rate of the line of sight angle and then interpolating to determine
the desired angle of attack.

Given the final altitude zf , Eqs. (9) and (10) can be solved as a two point boundary value problem (TPBVP) by
using a shooting method to find the final time that yields the desired final altitude. To efficiently solve this TPBVP,
the downrange and altitude coordinates are given parametrically in the form

x(t) = axt
3 + bxt

2 + cxt + dx

z(t) = azt
3 + bzt

2 + czt + dz

(11)

Note that there are five initial conditions in the initial configuration, four of which apply to x and z in Eq. (11).
From Eqs. (9) and (11) it follows that

6axti + 2bx = Fx(zi, ẋi , żi , αi)/M

6azti + 2bz = Fz(zi, ẋi , żi , αi)/M − g
(12)

which yields two more relations from the initial configuration. Two more relations can be obtained from Eqs. (9),
(10), and (11) as

6axtf + 2bx = Fx(zf , ẋf , żf , αf )

6aztf + 2bz = Fz(zf , ẋf , żf , αf )/M − g

αf = αie
− tf −ti

τ + αd(xi, zi, ẋi , żi , xAim){1 − e−(tf −ti )/τ }
(13)

by assuming that αd is constant over the interval (ti , tf ). Testing revealed that it was necessary to use the arithmetic
average of the desired force computed at the start and end of each altitude step in the computation of αd . In Eq. (13),
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zf is known and tf , ẋf , and żf are not known. If those quantities were known, it would be possible to solve a linear
two by two system for ax and bx and also for az and bz using Eqs. (12) and (13). The remaining unknowns, cx , dx ,
cz, and dz, can then be obtained easily from the initial configuration using back substitution. The TPBVP is solved
using the following iterative procedure:

1) Given (xi, zi, ẋi , żi , αi) at ti , set: ẋf ← ẋi , żf ← żi , tf ← ti + zf −zi

żf
, xf ← xi + (tf − ti)ẋf .

2) Compute αf , Fx and Fz at tf for the linear system coefficients.
3) Solve the linear system for ax , bx , cx , dx , az, bz, cz, dz.
4) Select t ′f from the roots of azt

3 + bzt
2 + czt + dz = zf .

5) ẋ ′
f ← 3axt

′2
f + 2bxt

′
f + cx , ż′

f ← 3azt
′2
f + 2bzt

′
f + cz, x ′

f ← axt
′3
f + bxt

′2
f + cxt

′
f + dx .

6) If (|tf − t ′f | > η̄) OR (|xf − x ′
f | > ε̄) OR (|ẋf − ẋ ′

f | > δ̄) OR (|żf − ż′
f | > δ̄).

a) ẋf ← ẋ ′
f , żf ← ż′

f , tf ← t ′f , xf ← x ′
f .

b) go to 2.
7) Return the final configuration, (xf , zf , ẋf , żf , αf ), at tf .
The proposed procedure makes use of the method of iteration and tabulated aerodynamic data. Convergence is

not guaranteed. It was found that monitoring the 2-norm of the error between the coefficient vectors at each iterative
step would indicate when the iteration had entered a limit cycle (norm is constant) or was diverging (norm increases)
to facilitate an early exit. In testing, the TPBVP solver has been fast and accurate enough to perform path planning
for indirect fire GPS guided weapons.

C. Collision Detection
To detect collisions with terrain it is assumed that level 1 digital terrain elevation data (DTED) is available to the

planning algorithm. By triangulating the terrain, collisions can be detected by looking for intersections between the
line connecting a parent and child vertex and the set of adjacent triangles that lie along the ground trace of this line
segment. Methods for quickly finding these triangles, and the method for detecting an intersection, have both been
well studied in the literature [14,15]. These methods also apply to representations of restricted airspace. Collision
detection is a straightforward addition to the algorithm presented here.

IV. Test Cases
The examples treated here make use of aero data for a typical GPS guided projectile. The data used were 3DOF, and

so the path planning algorithm treated here is restricted to 2D. Also, because the projectile is not very maneuverable,
the path planner was restricted to a single waypoint strategy.

For all cases considered here the initial configuration is at an altitude of 2000 m, Mach 0.8, pitch 45 degrees, and
angle of attack zero. The guidance loop uses PPN with K = 6 and τ = 0.3 s. The search tree was generated for 16
levels, from 2-km to the ground in 125 m steps using 11 waypoints uniformly spaced on [300, 5300]. The target is
located 3000 or 1000 m downrange from the initial position.

A. Case One: 3000 m Downrange
Consider the search tree shown in Fig. 4. In practice those branches that impact terrain or violate airspace will be

terminated at the altitude where the violation occurs by adding the collision detection algorithm discussed above. To
simplify the illustration of the method, all such obstacles have been omitted. The example shown below demonstrates
that the proposed algorithm can find a trajectory that clears by 50 m an obstacle at 2500 m downrange with a height
of 300 m.

The aimpoints vs altitude are shown in Fig. 5. For the upper bounding trajectory the waypoint is at 5300 m
downrange to an altitude of 875 m, then the aim-point is 3000 m to impact. For the lower bounding trajectory the
waypoint is at 300 m downrange to an altitude of 1750 m, then the aim-point is 3000 m to impact.

The waypoints are validated in Fig. 6 by integrating the governing differential equations (using the waypoints)
up to impact. Note that the bounding trajectories indicate that only a limited amount of trajectory shaping can be
accomplished. Nevertheless, an obstacle at 2500 m downrange with a height of 300 m can be cleared by 50 m using
the upper bounding trajectory shown in Fig. 6.
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Fig. 4 One waypoint search tree for a target at 3000 m downrange. Valid paths in red. Bounding paths (extremes
of arrival angle) in green.

B. Case Two: 1000 m Downrange
Consider the search tree shown in Fig. 7. In practice those branches that impact terrain or violate airspace will be

terminated at the altitude where the violation occurs by adding the collision detection algorithm discussed above. To
simplify the illustration of the method, all such obstacles have been omitted. The example shown below demonstrates
that the proposed algorithm can find a trajectory that clears by 350 m an obstacle at 600 m downrange with a height
of 1000 m.

Fig. 5 Aimpoints for the bounding trajectories that satisfy the miss criteria in Fig. 4.
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Fig. 6 Validation of the waypoints shown in Fig. 5. Trajectory errors are small enough for obstacle avoidance.

The aimpoints vs altitude are shown in Fig. 8. For the upper bounding trajectory the waypoint is at 2300 m
downrange to an altitude of 1625 m, then the aimpoint is 1000 m to impact. For the lower bounding trajectory the
waypoint is at 300 m downrange to an altitude of 1375 m, then the aimpoint is 1000 m to impact.

The waypoints are validated in Fig. 9 by integrating the governing differential equations (using the waypoints)
up to impact. Note that the bounding trajectories indicate that more trajectory shaping can be accomplished than for
the previous case. An obstacle at 600 m downrange with a height of 1000 m can be cleared by 350 m using the upper
bounding trajectory shown in Fig. 9.

Fig. 7 One waypoint search tree for a target at 1000 m downrange. Valid paths in red. Bounding paths (extremes
of arrival angle) in green.
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Fig. 8 Aimpoints for the bounding trajectories that satisfy the miss criteria in Fig. 7.

Fig. 9 Validation of the waypoints shown in Fig. 8. Trajectory errors are small enough for obstacle avoidance.

V. Conclusions
A path planning method applicable to GPS-guided indirect fire weapons was presented that is a modification of

an existing framework used for single-query sampling based planning. The method uses a dense search tree where
the number of vertices is linear in the depth of the tree, and a fast local search method. The example presented here
is restricted to PPN, 2D, and a single waypoint vertex selection, but is readily extended to any guidance method, 3D,
and a multi-waypoint vertex selection. In testing, the path planner has been accurate enough to find paths that will
avoid terrain or restricted airspace. Once the feasible set of paths has been identified, a secondary criterion can be
used, such as impact angle or arrival time.
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